Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Synthetic Gaia Surveys from the FIRE Cosmological Simulations of Milky Way-mass Galaxies


With Gaia Data Release 2, the astronomical community is entering a new era of multidimensional surveys of the Milky Way. This new phase-space view of our Galaxy demands new tools for comparing observations to simulations of Milky Way-mass galaxies in a cosmological context, to test the physics of both dark matter and galaxy formation. We present ananke, a framework for generating synthetic phase-space surveys from high-resolution baryonic simulations, and use it to generate a suite of synthetic surveys resembling Gaia DR2 in data structure, magnitude limits, and observational errors. We use three cosmological simulations of Milky Way-mass galaxies from the Latte suite of the Feedback In Realistic Environments project, which feature self-consistent clustering of star formation in dense molecular clouds and thin stellar/gaseous disks in live cosmological halos with satellite dwarf galaxies and stellar halos. We select three solar viewpoints from each simulation to generate nine synthetic Gaia-like surveys. We sample synthetic stars by assuming each star particle (of mass 7070 M o˙) represents a single stellar population. At each viewpoint, we compute dust extinction from the simulated gas metallicity distribution and apply a simple error model to produce a synthetic Gaia-like survey that includes both observational properties and a pointer to the generating star particle. We provide the complete simulation snapshot at z = 0 for each simulated galaxy. We describe data access points, the data model, and plans for future upgrades. These synthetic surveys provide a tool for the scientific community to test analysis methods and interpret Gaia data.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View