Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

A HYBRID METHOD FOR STIFF REACTION-DIFFUSION EQUATIONS.

  • Author(s): Qiu, Yuchi
  • Chen, Weitao
  • Nie, Qing
  • et al.
Abstract

The second-order implicit integration factor method (IIF2) is effective at solving stiff reaction-diffusion equations owing to its nice stability condition. IIF has previously been applied primarily to systems in which the reaction contained no explicitly time-dependent terms and the boundary conditions were homogeneous. If applied to a system with explicitly time-dependent reaction terms, we find that IIF2 requires prohibitively small time-steps, that are relative to the square of spatial grid sizes, to attain its theoretical second-order temporal accuracy. Although the second-order implicit exponential time differencing (iETD2) method can accurately handle explicitly time-dependent reactions, it is more computationally expensive than IIF2. In this paper, we develop a hybrid approach that combines the advantages of both methods, applying IIF2 to reaction terms that are not explicitly time-dependent and applying iETD2 to those which are. The second-order hybrid IIF-ETD method (hIFE2) inherits the lower complexity of IIF2 and the ability to remain second-order accurate in time for large time-steps from iETD2. Also, it inherits the unconditional stability from IIF2 and iETD2 methods for dealing with the stiffness in reaction-diffusion systems. Through a transformation, hIFE2 can handle nonhomogeneous boundary conditions accurately and efficiently. In addition, this approach can be naturally combined with the compact and array representations of IIF and ETD for systems in higher spatial dimensions. Various numerical simulations containing linear and nonlinear reactions are presented to demonstrate the superior stability, accuracy, and efficiency of the new hIFE method.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View