Skip to main content
eScholarship
Open Access Publications from the University of California

GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors

  • Author(s): Zheng, Bin
  • Berrie, Christopher P
  • Corda, Daniela
  • Farquhar, Marilyn G
  • et al.
Abstract

Previously we identified MIR16 (membrane interacting protein of RGS16) as an integral membrane glycoprotein that interacts with regulator of G protein signaling proteins and shares significant sequence homology with bacterial glycerophosphodiester phosphodiesterases (GDEs), suggesting that it is a putative mammalian GDE. Here we show that MIR16 belongs to a large, evolutionarily conserved family of GDEs with a characteristic putative catalytic domain that shares a common motif (amino acids 92-116) with the catalytic domains of mammalian phosphoinositide phospholipases C. Expression of wild-type MIR16 (renamed GDE1), but not two catalytic domain mutants (E97A/D99A and H112A), leads to a dramatic increase in glycerophosphoinositol phosphodiesterase (GPI-PDE) activity in HEK 293T cells. Analysis of substrate specificity shows that GDE1, MIR16 selectively hydrolyzes GPI over glycerophosphocholine. The GPI-PDE activity of GDE1/MIR16 expressed in HEK 293T cells can be regulated by stimulation of G protein-coupled, a alpha/beta-adrenergic, and lysophospholipid receptors. Membrane topology studies suggest a model in which the catalytic GDE domain faces the lumen/extracellular space and the C terminus faces the cytoplasm. Our results suggest that by serving as a PDE for GPI with its activity regulated by G protein signaling, GDE1/MIR16 provides a link between phosphoinositide metabolism and G protein signal transduction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View