- Main
Chemical composition mapping with nanometre resolution by soft X-ray microscopy
Published Web Location
https://doi.org/10.1038/nphoton.2014.207Abstract
X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with exquisite chemical, electronic and bond orientation contrast. The development of diffraction-based methods such as ptychography has, in principle, removed the resolution limit imposed by the characteristics of the X-ray optics. Here, using soft X-ray ptychography, we demonstrate the highest-resolution X-ray microscopy ever achieved by imaging 5â €..nm structures. We quantify the performance of our microscope and apply the method to the study of delithiation in a nanoplate of LiFePO 4, a material of broad interest in electrochemical energy storage. We calculate chemical component distributions using the full complex refractive index and demonstrate enhanced contrast, which elucidates a strong correlation between structural defects and chemical phase propagation. The ability to visualize the coupling of the kinetics of a phase transformation with the mechanical consequences is critical to designing materials with ultimate durability.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-