- Main
Complex symmetric evolution equations
Published Web Location
https://doi.org/10.1007/s13324-020-00358-3Abstract
We study certain dynamical systems which leave invariant an indefinite quadratic form via semigroups or evolution families of complex symmetric Hilbert space operators. In the setting of bounded operators we show that a $\mathcal{C}$-selfadjoint operator generates a contraction $C_0$-semigroup if and only if it is dissipative. In addition, we examine the abstract Cauchy problem for nonautonomous linear differential equations possessing a complex symmetry. In the unbounded operator framework we isolate the class of \emph{complex symmetric, unbounded semigroups} and investigate Stone-type theorems adapted to them. On Fock space realization, we characterize all $\mathcal{C}$-selfadjoint, unbounded weighted composition semigroups. As a byproduct we prove that the generator of a $\mathcal{C}$-selfadjoint, unbounded semigroup is not necessarily $\mathcal{C}$-selfadjoint.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-