- Main
Chlamydia trachomatis RsbU Phosphatase Activity Is Inhibited by the Enolase Product, Phosphoenolpyruvate.
Published Web Location
https://doi.org/10.1128/jb.00178-22Abstract
The intracellular pathogen Chlamydia temporally regulates the expression of its genes, but the upstream signals that control transcription are not known. The best-studied regulatory pathway is a partner-switching mechanism that involves an anti-sigma factor, RsbW, which inhibits transcription by binding and sequestering the sigma subunit of RNA polymerase. RsbW is itself regulated by an anti-anti-sigma factor, RsbV, whose phosphorylation state is controlled by the phosphatase RsbU. In this study, we showed that Chlamydia trachomatis RsbU requires manganese or magnesium as a cofactor and dephosphorylates RsbV1 and RsbV2, which are the two chlamydial paralogs of RsbV. The gene for RsbU is adjacent to the enolase gene in a number of Chlamydia genomes, and we showed that eno and rsbU are cotranscribed from the same operon. In other bacteria, there is no known functional connection between the Rsb pathway and enolase, which is an enzyme in the glycolytic pathway. We found, however, that Chlamydia RsbU phosphatase activity was inhibited by phosphoenolpyruvate (PEP), the product of the enolase reaction, but not by 2-phosphoglycerate (2PGA), which is the substrate. These findings suggest that the enolase reaction and, more generally, glucose metabolism, may provide an upstream signal that regulates transcription in Chlamydia through the RsbW pathway. IMPORTANCE The RsbW pathway is a phosphorelay that regulates gene expression in Chlamydia, but its upstream signal has not been identified. We showed that RsbU, a phosphatase in this pathway, is inhibited by phosphoenolpyruvate, which is the product of the enolase reaction. As enolase is an enzyme in the glycolytic pathway, these results reveal an unrecognized link between glucose metabolism and gene regulation in chlamydiae. Moreover, as these intracellular bacteria acquire glucose from the infected host cell, our findings suggest that glucose availability may be an external signal that controls chlamydial gene expression.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-