Efficient approaches for escaping higher order saddle points in non-convex optimization
Skip to main content
eScholarship
Open Access Publications from the University of California

Efficient approaches for escaping higher order saddle points in non-convex optimization

  • Author(s): Anandkumar, A
  • Ge, R
  • et al.
Abstract

Local search heuristics for non-convex optimizations are popular in applied machine learning. However, in general it is hard to guarantee that such algorithms even converge to a local minimum, due to the existence of complicated saddle point structures in high dimensions. Many functions have degenerate saddle points such that the first and second order derivatives cannot distinguish them with local optima. In this paper we use higher order derivatives to escape these saddle points: we design the first efficient algorithm guaranteed to converge to a third order local optimum (while existing techniques are at most second order). We also show that it is NP-hard to extend this further to finding fourth order local optima.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View