- Main
Proof-of-concept study of artificial intelligence-assisted review of CBCT image guidance.
Published Web Location
https://doi.org/10.1002/acm2.14016Abstract
PURPOSE: Automation and computer assistance can support quality assurance tasks in radiotherapy. Retrospective image review requires significant human resources, and automation of image review remains a noteworthy missing element in previous work. Here, we present initial findings from a proof-of-concept clinical implementation of an AI-assisted review of CBCT registrations used for patient setup. METHODS: An automated pipeline was developed and executed nightly, utilizing python scripts to interact with the clinical database through DICOM networking protocol and automate data retrieval and analysis. A previously developed artificial intelligence (AI) algorithm scored CBCT setup registrations based on misalignment likelihood, using a scale from 0 (most unlikely) through 1 (most likely). Over a 45-day period, 1357 pre-treatment CBCT registrations from 197 patients were retrieved and analyzed by the pipeline. Daily summary reports of the previous days registrations were produced. Initial action levels targeted 10% of cases to highlight for in-depth physics review. A validation subset of 100 cases was scored by three independent observers to characterize AI-model performance. RESULTS: Following an ROC analysis, a global threshold for model predictions of 0.87 was determined, with a sensitivity of 100% and specificity of 82%. Inspecting the observer scores for the stratified validation dataset showed a statistically significant correlation between observer scores and model predictions. CONCLUSION: In this work, we describe the implementation of an automated AI-analysis pipeline for daily quantitative analysis of CBCT-guided patient setup registrations. The AI-model was validated against independent expert observers, and appropriate action levels were determined to minimize false positives without sacrificing sensitivity. Case studies demonstrate the potential benefits of such a pipeline to bolster quality and safety programs in radiotherapy. To the authors knowledge, there are no previous works performing AI-assisted assessment of pre-treatment CBCT-based patient alignment.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-