Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Characterization of a transpositionally active Ty3 element and identification of the Ty3 integrase protein.

Abstract

Ty3 is a Saccharomyces cerevisiae retrotransposon associated with tRNA genes. Two Ty3 elements have been cloned and characterized. The complete nucleotide sequence for one element, Ty3-2, was reported previously (L. J. Hansen, D. L. Chalker, and S. B. Sandmeyer, Mol. Cell. Biol. 9:5245-5256, 1988). However, this element is incapable of autonomous transposition. The complete DNA sequence of a transpositionally competent Ty3 element, Ty3-1, is presented here. Its sequence translates into two overlapping open reading frames, TYA3-1 and TYB3-1, which encode proteins with homology to the proteins specified by the retroviral gag and pol genes, respectively. Comparison of the Ty3-1 nucleotide sequence to Ty3-2 suggests that the TYB3-2 open reading frame of Ty3-2 is truncated by the deletion of a single nucleotide, which causes a frameshift mutation. Restoration of the reading frame with insertion of a single adenine by site-directed mutagenesis converted Ty3-2 into a transpositionally active element, Ty3-2(+ A). Western blot analysis with antibodies made against synthetic peptides identified integrase (IN) proteins in viruslike particle preparations from cells expressing Ty3 elements. Cells expressing Ty3-1 and Ty3-2 (+A) produce antibody-reactive proteins with approximate molecular masses of 61 and 58 kilodaltons (kDa), while cells expressing Ty3-2 produce reactive proteins of approximately 52 and 49 kDa. Together, these data show that the 61- or 58-kDa protein, or both, provides the integrase function of Ty3.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View