Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Smoothed quantile regression with large-scale inference

Abstract

Quantile regression is a powerful tool for learning the relationship between a response variable and a multivariate predictor while exploring heterogeneous effects. This paper focuses on statistical inference for quantile regression in the "increasing dimension" regime. We provide a comprehensive analysis of a convolution smoothed approach that achieves adequate approximation to computation and inference for quantile regression. This method, which we refer to as conquer, turns the non-differentiable check function into a twice-differentiable, convex and locally strongly convex surrogate, which admits fast and scalable gradient-based algorithms to perform optimization, and multiplier bootstrap for statistical inference. Theoretically, we establish explicit non-asymptotic bounds on estimation and Bahadur-Kiefer linearization errors, from which we show that the asymptotic normality of the conquer estimator holds under a weaker requirement on dimensionality than needed for conventional quantile regression. The validity of multiplier bootstrap is also provided. Numerical studies confirm conquer as a practical and reliable approach to large-scale inference for quantile regression. Software implementing the methodology is available in the R package conquer.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.