Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Smoothed quantile regression with large-scale inference

Abstract

Quantile regression is a powerful tool for learning the relationship between a response variable and a multivariate predictor while exploring heterogeneous effects. This paper focuses on statistical inference for quantile regression in the "increasing dimension" regime. We provide a comprehensive analysis of a convolution smoothed approach that achieves adequate approximation to computation and inference for quantile regression. This method, which we refer to as conquer, turns the non-differentiable check function into a twice-differentiable, convex and locally strongly convex surrogate, which admits fast and scalable gradient-based algorithms to perform optimization, and multiplier bootstrap for statistical inference. Theoretically, we establish explicit non-asymptotic bounds on estimation and Bahadur-Kiefer linearization errors, from which we show that the asymptotic normality of the conquer estimator holds under a weaker requirement on dimensionality than needed for conventional quantile regression. The validity of multiplier bootstrap is also provided. Numerical studies confirm conquer as a practical and reliable approach to large-scale inference for quantile regression. Software implementing the methodology is available in the R package conquer.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View