Skip to main content
eScholarship
Open Access Publications from the University of California

Genetic mutations in Ca2+ signaling alter dendrite morphology and social approach in juvenile mice.

  • Author(s): Keil, Kimberly P
  • Sethi, Sunjay
  • Wilson, Machelle D
  • Silverman, Jill L
  • Pessah, Isaac N
  • Lein, Pamela J
  • et al.

Published Web Location

https://doi.org/10.1111/gbb.12526
No data is associated with this publication.
Abstract

Dendritic morphology is a critical determinant of neuronal connectivity, and calcium signaling plays a predominant role in shaping dendrites. Altered dendritic morphology and genetic mutations in calcium signaling are both associated with neurodevelopmental disorders (NDDs). In this study we tested the hypothesis that dendritic arborization and NDD-relevant behavioral phenotypes are altered by human mutations that modulate calcium-dependent signaling pathways implicated in NDDs. The dendritic morphology of pyramidal neurons in CA1 hippocampus and somatosensory cortex was quantified in Golgi-stained brain sections from juvenile mice of both sexes expressing either a human gain-of-function mutation in ryanodine receptor 1 (T4826I-RYR1), a human CGG repeat expansion (170-200 CGG repeats) in the fragile X mental retardation gene 1 (FMR1 premutation), both mutations (double mutation; DM), or wildtype mice. In hippocampal neurons, increased dendritic arborization was observed in male T4826I-RYR1 and, to a lesser extent, male FMR1 premutation neurons. Dendritic morphology of cortical neurons was altered in both sexes of FMR1 premutation and DM animals with the most pronounced differences seen in DM females. Genotype also impaired behavior, as assessed using the three-chambered social approach test. The most striking lack of sociability was observed in DM male and female mice. In conclusion, mutations that alter the fidelity of calcium signaling enhance dendritic arborization in a brain region- and sex-specific manner and impair social behavior in juvenile mice. The phenotypic outcomes of these mutations likely provide a susceptible biological substrate for additional environmental stressors that converge on calcium signaling to determine individual NDD risk.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content

This item is under embargo until June 11, 2020.