Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

MedleySolver: Online SMT Algorithm Selection

Abstract

Satisfiability modulo theories (SMT) solvers implement a wide range of optimizations that are often tailored to a particular class of problems, and that differ significantly between solvers. As a result, one solver may solve a query quickly while another might be flummoxed completely. Predicting the performance of a given solver is difficult for users of SMT-driven applications, particularly when the problems they have to solve do not fall neatly into a well-understood category. In this paper, we propose an online algorithm selection framework for SMT called MedleySolver that predicts the relative performances of a set of SMT solvers on a given query, distributes time amongst the solvers, and deploys the solvers in sequence until a solution is obtained. We evaluate MedleySolver against the best available alternative, an offline learning technique, in terms of pure performance and practical usability for a typical SMT user. We find that with no prior training, MedleySolver solves 93.9% of the queries solved by the virtual best solver selector achieving 59.8% of the par-2 score of the most successful individual solver, which solves 87.3%. For comparison, the best available alternative takes longer to train than MedleySolver takes to solve our entire set of 2000 queries.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View