- Main
Spatial integration during active tactile sensation drives orientation perception
Published Web Location
https://doi.org/10.1016/j.neuron.2021.03.020Abstract
Active haptic sensation is critical for object identification, but its neural circuit basis is poorly understood. We combined optogenetics, two-photon imaging, and high-speed behavioral tracking in mice solving a whisker-based object orientation discrimination task. We found that orientation discrimination required animals to summate input from multiple whiskers specifically along the whisker arc. Animals discriminated the orientation of the stimulus per se as their performance was invariant to the location of the presented stimulus. Populations of barrel cortex neurons summated across whiskers to encode each orientation. Finally, acute optogenetic inactivation of the barrel cortex and cell-type-specific optogenetic suppression of layer 4 excitatory neurons degraded performance, implying that infragranular layers alone are not sufficient to solve the task. These data suggest that spatial summation over an active haptic array generates representations of an object's orientation, which may facilitate encoding of complex three-dimensional objects during active exploration.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-