Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Genetic dissection reveals unexpected influence of beta subunits on KCNQ1 K+ channel polarized trafficking in vivo.

  • Author(s): Roepke, Torsten K;
  • King, Elizabeth C;
  • Purtell, Kerry;
  • Kanda, Vikram A;
  • Lerner, Daniel J;
  • Abbott, Geoffrey W
  • et al.
Abstract

Targeted deletion of the Kcne2 potassium channel β subunit gene ablates gastric acid secretion and predisposes to gastric neoplasia in mice. Here, we discovered that Kcne2 deletion basolaterally reroutes the Kcnq1 α subunit in vivo in parietal cells (PCs), in which the normally apical location of the Kcnq1-Kcne2 channel facilitates its essential role in gastric acid secretion. Quantitative RT-PCR and Western blotting revealed that Kcne2 deletion remodeled fundic Kcne3 (2.9±0.8-fold mRNA increase, n=10; 5.3±0.4-fold protein increase, n=7) but not Kcne1, 4, or 5, and resulted in basolateral Kcnq1-Kcne3 complex formation in Kcne2(-/-) PCs. Concomitant targeted deletion of Kcne3 (creating Kcne2(-/-)Kcne3(-/-) mice) restored PC apical Kcnq1 localization without Kcne1, 4, or 5 remodeling (assessed by quantitative RT-PCR; n=5-10), indicating Kcne3 actively, basolaterally rerouted Kcnq1 in Kcne2(-/-) PCs. Despite this, Kcne3 deletion exacerbated gastric hyperplasia in Kcne2(-/-) mice, and both hypochlorhydria and hyperplasia in Kcne2(+/-) mice, suggesting that Kcne3 up-regulation was beneficial in Kcne2-depleted PCs. The findings reveal, in vivo, Kcne-dependent α subunit polarized trafficking and the existence and consequences of potassium channel β subunit remodeling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View