Skip to main content
Open Access Publications from the University of California

Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

  • Author(s): Li, G;
  • Rangel, T;
  • Liu, ZF;
  • Cooper, VR;
  • Neaton, JB
  • et al.

Using density functional theory (DFT) with a van der Waals density functional, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously studied monomeric phases. Moreover, using a model, which includes nonlocal polarization effects from the substrate and the neighboring molecules and incorporates many-body perturbation theory calculations within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. We find that, independent of coverage, the HOMO energy of the linear chain phase is lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View