Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Two Recursive Decompositions of Brownian Bridge Related to the Asymptotics of Random Mappings

Abstract

Aldous and Pitman (1994) studied asymptotic distributions as n → ∞, of various functional of a uniform random mapping of the set {1,..., n}, by constructing a mapping-walk and showing these random walks converge weakly to a reflecting Brownian bridge. Two different ways to encode a mapping as a walk lead to two different decompositions of the Brownian bridge, each defined by cutting the path of the bridge at an increasing sequence of recursively defined random times in the zero set of the bridge. The random mapping asymptotics entail some remarkable identities involving the random occupation measures of the bridge fragments defined by these decompositions. We derive various extensions of these identities for Brownian and Bessel bridges, and characterize the distributions of various path fragments involved, using the Lévy-ltô theory of Poisson processes of excursions for a self-similar Markov process whose zero set is the range of a stable subordinator of index α ∈ (0,1).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View