Skip to main content
eScholarship
Open Access Publications from the University of California

Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease.

  • Author(s): Heredia, Lorena
  • Helguera, Pablo
  • de Olmos, Soledad
  • Kedikian, Gabriela
  • Solá Vigo, Francisco
  • LaFerla, Frank
  • Staufenbiel, Matthias
  • de Olmos, José
  • Busciglio, Jorge
  • Cáceres, Alfredo
  • Lorenzo, Alfredo
  • et al.
Abstract

Deposition of fibrillar amyloid beta (fAbeta) plays a critical role in Alzheimer's disease (AD). We have shown recently that fAbeta-induced dystrophy requires the activation of focal adhesion proteins and the formation of aberrant focal adhesion structures, suggesting the activation of a mechanism of maladaptative plasticity in AD. Focal adhesions are actin-based structures that provide a structural link between the extracellular matrix and the cytoskeleton. To gain additional insight in the molecular mechanism of neuronal degeneration in AD, here we explored the involvement of LIM kinase 1 (LIMK1), actin-depolymerizing factor (ADF), and cofilin in Abeta-induced dystrophy. ADF/cofilin are actin-binding proteins that play a central role in actin filament dynamics, and LIMK1 is the kinase that phosphorylates and thereby inhibits ADF/cofilin. Our data indicate that treatment of hippocampal neurons with fAbeta increases the level of Ser3-phosphorylated ADF/cofilin and Thr508-phosphorylated LIMK1 (P-LIMK1), accompanied by a dramatic remodeling of actin filaments, neuritic dystrophy, and neuronal cell death. A synthetic peptide, S3 peptide, which acts as a specific competitor for ADF/cofilin phosphorylation by LIMK1, inhibited fAbeta-induced ADF/cofilin phosphorylation, preventing actin filament remodeling and neuronal degeneration, indicating the involvement of LIMK1 in Abeta-induced neuronal degeneration in vitro. Immunofluorescence analysis of AD brain showed a significant increase in the number of P-LIMK1-positive neurons in areas affected with AD pathology. P-LIMK1-positive neurons also showed early signs of AD pathology, such as intracellular Abeta and pretangle phosphorylated tau. Thus, LIMK1 activation may play a key role in AD pathology.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View