Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

A diet containing a nonfat dry milk matrix significantly alters systemic oxylipins and the endocannabinoid 2-arachidonoylglycerol (2-AG) in diet-induced obese mice

Abstract

Background

Diets rich in dairy and/or calcium (Ca) have been associated with reductions in adiposity and inflammation, but the mechanisms underlying this remain to be fully elucidated. Oxylipins and endocannabinoids are bioactive lipids, which influence energy homeostasis, adipose function, insulin signaling, and inflammation. Our objective was to determine if these metabolites associate with metabolic and inflammatory phenotypes stemming from dietary Ca and dairy in diet induced obese mice.

Methods

In one study, C57BL6/J mice were fed high fat diets (45% energy) with varying dietary matrices for 12 weeks: soy protein and Ca adequate (0.5%; CONTROL), soy protein and high Ca (1.5%; HighCa), or nonfat-dry-milk based high Ca (NFDM). In a second study, mice were pre-fattened for 12 weeks on the CONTROL high fat diet, and then fed one of three high fat diets for an additional 8 weeks: CONTROL, HighCa, or NFDM. In both studies, adiposity and associated metabolic and inflammatory outcomes were measured and a targeted lipidomics analysis was performed on plasma collected during the post-absorptive condition.

Results

As reported previously, mice fed NFDM had less body fat and reduced mRNA markers of adipose inflammation (p < 0.05) than CONTROL mice despite greater cumulative energy intake. Moreover, NFDM fed mice lipid mediator profiles were distinct from CONTROL and HighCa mice. NFDM fed mice showed elevated plasma monoacylglycerols (6 - 46% increase from CONTROL), including 2-arachidonoylglycerol (2-AG), and reduced fatty acid diols (8-75% decrease from CONTROL).

Conclusions

Differences in specific plasma lipid mediator profiles reflect the metabolic and inflammatory phenotypes seen in NFDM feeding.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View