- Main
Skew-Unfolding the Skorokhod Reflection of a Continuous Semimartingale
Abstract
The Skorokhod reflection of a continuous semimartingale is unfolded, in a possibly skewed manner, into another continuous semimartingale on an enlarged probability space according to the excursion-theoretic methodology of [14]. This is done in terms of a skew version of the Tanaka equation, whose properties are studied in some detail. The result is used to construct a system of two diffusive particles with rank-based characteristics and skew-elastic collisions. Unfoldings of conventional reflections are also discussed, as are examples involving skew Brownian Motions and skew Bessel processes.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-