Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

GABAρ subunits confer a bicuculline-insensitive component to GFAP+ cells of cerebellum

Abstract

GABA-A receptors mediating synaptic or extrasynaptic transmission are molecularly and functionally distinct, and glial cells are known to express a plethora of GABA-A subunits. Here we demonstrate that GFAP(+) cells of the granular layer of cerebellum express GABAρ subunits during early postnatal development, thereby conferring peculiar pharmacologic characteristics to GABA responses. Electron microscopy revealed the presence of GABAρ in the plasma membrane of GFAP(+) cells. In contrast, expression in the adult was restricted to Purkinje neurons and a subset of ependymal cells. Electrophysiological studies in vitro revealed that astrocytes express functional receptors with an EC50 of 52.2 ± 11.8 μM for GABA. The evoked currents were inhibited by bicuculline (100 μM) and TPMPA (IC50, 5.9 ± 0.6 μM), indicating the presence of a GABAρ component. Coimmunoprecipitation demonstrated protein-protein interactions between GABAρ1 and GABAα1, and double immunofluorescence showed that these subunits colocalize in the plasma membrane. Three populations of GABA-A receptors in astrocytes were identified: classic GABA-A, bicuculline-insensitive GABAρ, and GABA-A-GABAρ hybrids. Clusters of GABA-A receptors were distributed in the perinuclear space and along the processes of GFAP(+) cells. Time-lapse microscopy showed GABAρ2-GFP accumulation in clusters located in the soma and along the processes. The clusters were relatively immobile, with mean displacement of 9.4 ± 0.9 μm and a net distance traveled of 1-2 μm, owing mainly to directional movement or simple diffusion. Modulation of GABAρ dynamics may be a novel mechanism of extrasynaptic transmission regulating GABAergic control of GFAP(+) cells during early postnatal development.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View