Distribution of a Particle’s Position in the ASEP with the Alternating Initial Condition
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Distribution of a Particle’s Position in the ASEP with the Alternating Initial Condition

Abstract

In this paper we give the distribution of the position of a particle in the asymmetric simple exclusion process (ASEP) with the alternating initial condition. That is, we find ℙ(X m (t)≤x) where X m (t) is the position of the particle at time t which was at m=2k−1, k∈ℤ at t=0. As in the ASEP with step initial condition, there arises a new combinatorial identity for the alternating initial condition, and this identity relates the integrand of the integral formula for ℙ(X m (t)≤x) to a determinantal form together with an extra product.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View