Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Two-Level Lattice Neural Network Architectures for Control of Nonlinear Systems

Abstract

In this paper, we consider the problem of automatically designing a Rectified Linear Unit (ReLU) Neural Network (NN) architecture (number of layers and number of neurons per layer) with the guarantee that it is sufficiently parametrized to control a nonlinear system. Whereas current state-of-the-art techniques are based on hand-picked architectures or heuristic-based search to find such NN architectures, our approach exploits a given model of the system to design an architecture; as a result, we provide a guarantee that the resulting NN architecture is sufficient to implement a controller that satisfies an achievable specification. Our approach exploits two basic ideas. First, we assume that the system can be controlled by a Lipschitz-continuous state-feedback controller that is unknown but whose Lipschitz constant is upper-bounded by a known constant; then using this assumption, we bound the number of affine functions needed to construct a Continuous Piecewise Affine (CPWA) function that can approximate the unknown Lipschitz-continuous controller. Second, we utilize the authors' recent results on the Two-Level Lattice (TLL) NN architecture, a novel NN architecture that was shown to be parameterized directly by the number of affine functions that comprise the CPWA function it realizes. We also evaluate our method by designing a NN architecture to control an inverted pendulum.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.