Skip to main content
eScholarship
Open Access Publications from the University of California

Intense training overcomes effects of the Val66Met BDNF polymorphism on short-term plasticity.

  • Author(s): McHughen, Stephanie A
  • Pearson-Fuhrhop, Kristin
  • Ngo, Vivian K
  • Cramer, Steven C
  • et al.
Abstract

The val(66)met polymorphism in the brain-derived neurotrophic factor (BDNF) gene impacts activity-dependent secretion of BDNF and modifies short-term cortical plasticity. The current study examined whether sustained training overcomes polymorphism effects on short-term plasticity and also examined polymorphism effects on long-term plasticity. Twenty-four subjects completed a 12-day protocol of daily training on a marble navigation task that required intense use of the first dorsal interosseus (FDI) muscle. In parallel, transcranial magnetic stimulation (TMS) mapping was used to assess serial measures of short-term cortical motor map plasticity, plus long-term cortical motor map plasticity, of the cortical FDI map. On Day 1, subjects with the polymorphism did not show significant short-term cortical motor map plasticity over 30 min of FDI activity, but subjects without the polymorphism did. After 5 days of intense training, a genotype-based difference in short-term cortical motor map plasticity was no longer found, as both groups showed short-term plasticity across the 30 min of FDI activity. Also, across 12 days of training, map area decreased significantly, in a manner that did not vary in relation to genotype. Training of sufficient intensity and duration overcomes effects that the val(66)met polymorphism has on short-term cortical motor map plasticity. The polymorphism-related differences seen with short-term plasticity are not found with long-term cortical motor map plasticity.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View