Skip to main content
eScholarship
Open Access Publications from the University of California

Control of dry season evapotranspiration over the Amazonian forest as inferred from observation at a Southern Amazon forest site

  • Author(s): Negrón Juárez, RI
  • Hodnett, MG
  • Fu, R
  • Gouden, ML
  • von Randow, C
  • et al.
Abstract

The extent to which soil water storage can support an average dry season evapotranspiration (ET) is investigated using observations from the Rebio Jarú site for the period of 2000 to 2002. During the dry season, when total rainfall is less than 100 mm, the soil moisture storage available to root uptake in the top 3-m layer is sufficient to maintain the ET rate, which is equal to or higher than that in the wet season. With a normal or less-than-normal dry season rainfall, more than 75% of the ET is supplied by soil water below 1 m, whereas during a rainier dry season, about 50% of ET is provided by soil water from below 1 m. Soil moisture below 1-m depth is recharged by rainfall during the previous wet season: dry season rainfall rarely infiltrates to this depth. These results suggest that, even near the southern edge of the Amazon forest, seasonal and moderate interannual rainfall deficits can be mitigated by an increase in root uptake from deeper soil. How dry se ason ET varies geographically within the Amazon and what might control its geographic distribution are examined by comparing in situ observations from 10 sites from different areas of Amazonia reported during the last two decades. Results show that the average dry season ET varies less than 1 mm day-1 or 30% from the driest to nearly the wettest parts of Amazonia and is largely correlated with the change of surface net radiation of 25% and 30%. Thus the geographic variation of the average dry season ET appears to be mainly determined by the surface radiation. © 2007 American Meteorological Society.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View