Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Serial perturbation of MinK in IKs implies an alpha-helical transmembrane span traversing the channel corpus.


I(Ks) channels contain four pore-forming KCNQ1 subunits and two accessory MinK subunits. MinK influences surface expression, voltage-dependence of gating, conduction, and pharmacology to yield the attributes characteristic of native channels in heart. The structure and location of the MinK transmembrane domain (TMD) remains a matter of scrutiny. As perturbation of gating analysis has correctly inferred the peripheral location and alpha-helical nature of TMDs in pore-forming subunits, the method is applied here to human MinK. Tryptophan and Asparagine substitution at 23 consecutive sites yields perturbation with alpha-helical periodicity (residues 44-56) followed by an alternating impact pattern (residues 56-63). Arginine substitution across the span suggests that as few as eight sites are occluded from aqueous solution (residues 50-57). We favor a TMD model that is alpha-helical with the external portion of the span at a lipid-protein boundary and the inner portion within the channel corpus in complex interactions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View