Skip to main content
eScholarship
Open Access Publications from the University of California

A comprehensive characterization of the set of polynomial curves with rational rotation-minimizing frames

  • Author(s): Farouki, RT
  • Gentili, G
  • Giannelli, C
  • Sestini, A
  • Stoppato, C
  • et al.
Abstract

© 2016, Springer Science+Business Media New York. A rotation–minimizing frame (f1,f2,f3) on a space curve r(ξ) defines an orthonormal basis for ℝ3 in which f1= r′/ | r′| is the curve tangent, and the normal–plane vectors f2, f3 exhibit no instantaneous rotation about f1. Polynomial curves that admit rational rotation–minimizing frames (or RRMF curves) form a subset of the Pythagorean–hodograph (PH) curves, specified by integrating the form r′(ξ)=A(ξ)iA∗(ξ) for some quaternion polynomial A(ξ). By introducing the notion of the rotation indicatrix and the core of the quaternion polynomial A(ξ) , a comprehensive characterization of the complete space of RRMF curves is developed, that subsumes all previously known special cases. This novel characterization helps clarify the structure of the complete space of RRMF curves, distinguishes the spatial RRMF curves from trivial (planar) cases, and paves the way toward new construction algorithms.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View