- Main
Stochastic resolution of identity second-order Matsubara Green’s function theory
Published Web Location
https://doi.org/10.1063/1.5108840Abstract
We develop a stochastic resolution of identity representation to the second-order Matsubara Green's function (sRI-GF2) theory. Using a stochastic resolution of the Coulomb integrals, the second order Born self-energy in GF2 is decoupled and reduced to matrix products/contractions, which reduces the computational cost from O(N5) to O(N3) (with N being the number of atomic orbitals). The current approach can be viewed as an extension to our previous work on stochastic resolution of identity second order Møller-Plesset perturbation theory [T. Y. Takeshita et al., J. Chem. Theory Comput. 13, 4605 (2017)] and offers an alternative to previous stochastic GF2 formulations [D. Neuhauser et al., J. Chem. Theory Comput. 13, 5396 (2017)]. We show that sRI-GF2 recovers the deterministic GF2 results for small systems, is computationally faster than deterministic GF2 for N > 80, and is a practical approach to describe weak correlations in systems with 103 electrons and more.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-