Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations bannerUC Santa Barbara

Tuning The Optical, Charge Injection, and Charge Transport Properties of Organic Electronic Devices


Since the early 1900's, synthetic insulating polymers (plastics) have slowly taken over the role that traditional materials like wood or metal have had as basic components for construction, manufactured goods, and parts. Plastics allow for high throughput, low temperature processing, and control of bulk properties through molecular modifications. In the same way, pi-conjugated organic molecules are emerging as a possible substitute for inorganic materials due to their electronic properties. The semiconductive nature of pi-conjugated materials make them an attractive candidate to replace inorganic materials, primarily due to their promise for low cost and large-scale production of basic semiconducting devices such as light-emitting diodes, solar cells, and field-effect transistors.

Before organic semiconductors can be realized as a commercial product, several hurdles must be cleared. The purpose of this dissertation is to address three distinct properties that dominate the functionality of devices harnessing these materials: (1) optical properties, (2) charge injection, and (3) charge transport. First, it is shown that the electron injection barrier in the emissive layer of polymer light-emitting diodes can be significantly reduced by processing of novel conjugated oligoelectrolytes or deoxyribonucleic acid atop the emissive layer. Next, the charge transport properties of several polymers could be modified by processing them from solvents containing small amounts of additives or by using regioregular and enantiopure chemical structures.

It is then demonstrated that the optical and electronic properties of Lewis basic polymer structures can be readily modified by interactions with strongly electron-withdrawing Lewis acids. Through red-shifted absorption, photoluminescence, and electroluminescence, a single pi-conjugated backbone can be polychromatic. In addition, interaction with Lewis acids can remarkably p-dope the hole transport of the parent polymer, leading to a two-orders of magnitude increase in the hole mobility. Finally, the hole, electron, and double carrier transport in solar cell devices are studied in a bid to examine the correlations between bulk morphologies and free carrier recombination.

The sum of these works help to create new pathways for the synthesis and design of new pi-conjugated materials and device architectures. All of this is in hopes of achieving higher performance and more stable devices to rival inorganic systems.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View