Skip to main content
Open Access Publications from the University of California

Motion planning with sequential convex optimization and convex collision checking

  • Author(s): Schulman, J
  • Duan, Y
  • Ho, J
  • Lee, A
  • Awwal, I
  • Bradlow, H
  • Pan, J
  • Patil, S
  • Goldberg, K
  • Abbeel, P
  • et al.

© The Author(s) 2014. We present a new optimization-based approach for robotic motion planning among obstacles. Like CHOMP (Covariant Hamiltonian Optimization for Motion Planning), our algorithm can be used to find collision-free trajectories from naïve, straight-line initializations that might be in collision. At the core of our approach are (a) a sequential convex optimization procedure, which penalizes collisions with a hinge loss and increases the penalty coefficients in an outer loop as necessary, and (b) an efficient formulation of the no-collisions constraint that directly considers continuous-time safety Our algorithm is implemented in a software package called TrajOpt.We report results from a series of experiments comparing TrajOpt with CHOMP and randomized planners from OMPL, with regard to planning time and path quality. We consider motion planning for 7 DOF robot arms, 18 DOF full-body robots, statically stable walking motion for the 34 DOF Atlas humanoid robot, and physical experiments with the 18 DOF PR2. We also apply TrajOpt to plan curvature-constrained steerable needle trajectories in the SE(3) configuration space and multiple non-intersecting curved channels within 3D-printed implants for intracavitary brachytherapy. Details, videos, and source code are freely available at:

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View