Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Activation of Specific Neuronal Circuits by Corticotropin Releasing Hormone as Indicated by c-fos Expression and Glucose Metabolism

Abstract

The neuropeptide corticotropin releasing hormone (CRH) is the central nervous system (CNS) transducer of stressful stimuli. Endogenous CRH is released from neuronal terminals in several central nervous system regions-for example, amygdala and hypothalamus-during stress, and exogenous CRH administration mimics stress-related behaviors and hormonal patterns. However, whereas the role of endogenous CRH as a stress neuromodulator has been established, recent findings suggest that the peptide also functions to influence cognitive, emotional, and neuroimmune functions by modulating neuronal communication in a number of circuits. Although anatomic and pharmacologic approaches have provided evidence for this wider spectrum of CRH actions, the discrete regions and specific circuits activated by CRH have not been fully elucidated. In this article, the authors report on the use of two complementary methods to discern specific regions and cell groups activated by the administration of CRH. Glucose metabolism analysis provided quantitative measures of CRH-induced activation, but at a regional resolution; expression of the immediate early gene c-fos permitted a single cell resolution, but underestimated the neuroanatomic extent of CRH-induced activation. Overlapping regions activated using both methods delineated discrete cortical, limbic. and motor pathways. Importantly, cell groups activated by CRH included those possessing either or both members of the CRH receptor family, suggesting that both receptors may mediate the effects of the endogenous ligand. In summary, CRH activates a broad but selective array of neuronal structures belonging to cortical, limbic, and motor circuits. These findings indicate that stress-related release of this peptide may contribute to a spectrum of important modulations of CNS function.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View