Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Electrosurgery Turbinate Reduction Revisited: Can Comparable Volumetric Heating be Achieved Without Feedback Control?

Published Web Location

https://doi.org/10.1002/lsm.23293Creative Commons 'BY' version 4.0 license
Abstract

Background and objectives

Temperature-controlled radiofrequency inferior turbinate ablation (TCRFA) uses a feedback system to control thermal injury and achieve precise volumetric heating to induce specific scar formation. However, it requires costly single-use proprietary consumables. Comparable volumetric tissue heating may be achieved for a fraction of the cost by adjusting the power settings on traditional monopolar electrosurgery devices that use low-cost needle tips. This pre-clinical study aims to determine the optimized power parameters to achieve electrosurgical coagulum volume similar to that of TCRFA.

Study design/materials and methods

An electrosurgery submucosal diathermy (SMD) system (cut mode, 4-32 W, 5-120 seconds) and a temperature-controlled radiofrequency ablation system (standard clinical parameters for treating inferior turbinate hypertrophy) were used to coagulate egg white and chicken breast. Coagulum major and minor axis were measured, and lesion volume was approximated as prolate spheroid.

Results

No significant difference in volume was found between the temperature-controlled system and the electrosurgery system at 8 W for 30 seconds, 8 W for 60 seconds, 16 W for 30 seconds, 32 W for 5 seconds, and 32 W for 15 seconds. The time to achieve equivalent lesion size was significantly less in the SMD system when compared to the temperature-controlled system (P < 0.05).

Conclusion

Electrosurgery handpieces may achieve similar lesion volume effects as the temperature feedback-controlled, single-use handpieces when set to the optimized parameters. SMD handpieces are significantly more cost and time effective than proprietary devices, and they are easily used in the office. SMD devices may be a more affordable alternative to temperature-controlled systems with comparable lesion volume effect and may be valuable for office-based therapy. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View