Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Genetic Variants in Metabolic Signaling Pathways and Their Interaction with Lifestyle Factors on Breast Cancer Risk: A Random Survival Forest Analysis.

  • Author(s): Jung, Su Yon;
  • Papp, Jeanette C;
  • Sobel, Eric M;
  • Zhang, Zuo-Feng
  • et al.

Genetic variants in the insulin-like growth factor-I (IGF-I)/insulin resistance axis may interact with lifestyle factors, influencing postmenopausal breast cancer risk, but these interrelated pathways are not fully understood. In this study, we examined 54 single-nucleotide polymorphisms (SNP) in genes related to IGF-I/insulin phenotypes and signaling pathways and lifestyle factors in relation to postmenopausal breast cancer, using data from 6,567 postmenopausal women in the Women's Health Initiative Harmonized and Imputed Genome-Wide Association Studies. We used a machine-learning method, two-stage random survival forest analysis. We identified three genetic variants (AKT1 rs2494740, AKT1 rs2494744, and AKT1 rs2498789) and two lifestyle factors [body mass index (BMI) and dietary alcohol intake] as the top five most influential predictors for breast cancer risk. The combination of the three SNPs, BMI, and alcohol consumption (≥1 g/day) significantly increased the risk of breast cancer in a gene and lifestyle dose-dependent manner. Our findings provide insight into gene-lifestyle interactions and will enable researchers to focus on individuals with risk genotypes to promote intervention strategies. These data also suggest potential genetic targets in future intervention/clinical trials for cancer prevention in order to reduce the risk for breast cancer in postmenopausal women. Cancer Prev Res; 11(1); 44-51. ©2017 AACR.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View