Ensemble photometric redshifts
Skip to main content
Open Access Publications from the University of California

Ensemble photometric redshifts

  • Author(s): Padmanabhan, Nikhil
  • White, Martin
  • Chang, Tzu-Ching
  • Cohn, JD
  • Dore, Olivier
  • Holder, Gil
  • et al.

Upcoming imaging surveys, such as LSST, will provide an unprecedented view of the Universe, but with limited resolution along the line-of-sight. Common ways to increase resolution in the third dimension, and reduce misclassifications, include observing a wider wavelength range and/or combining the broad-band imaging with higher spectral resolution data. The challenge with these approaches is matching the depth of these ancillary data with the original imaging survey. However, while a full 3D map is required for some science, there are many situations where only the statistical distribution of objects (dN/dz) in the line-of-sight direction is needed. In such situations, there is no need to measure the fluxes of individual objects in all of the surveys. Rather a stacking procedure can be used to perform an `ensemble photo-z'. We show how a shallow, higher spectral resolution survey can be used to measure dN/dz for stacks of galaxies which coincide in a deeper, lower resolution survey. The galaxies in the deeper survey do not even need to appear individually in the shallow survey. We give a toy model example to illustrate tradeoffs and considerations for applying this method. This approach will allow deep imaging surveys to leverage the high resolution of spectroscopic and narrow/medium band surveys underway, even when the latter do not have the same reach to high redshift.

Main Content
Current View