Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Congruence modules in higher codimension and zeta lines in Galois cohomology

Abstract

This article builds on recent work of the first three authors where a notion of congruence modules in higher codimension is introduced. The main results are a criterion for detecting regularity of local rings in terms of congruence modules, and a more refined version of a result tracking the change of congruence modules under deformation. Number theoretic applications include the construction of canonical lines in certain Galois cohomology groups arising from adjoint motives of Hilbert modular forms.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View