Skip to main content
Open Access Publications from the University of California

Machine learning action parameters in lattice quantum chromodynamics

  • Author(s): Shanahan, Phiala E
  • Trewartha, Daniel
  • Detmold, William
  • et al.

© 2018 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the »» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Numerical lattice quantum chromodynamics studies of the strong interaction are important in many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. The high information content and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.

Main Content
Current View