Skip to main content
Open Access Publications from the University of California

CHOPER filters enable rare mutation detection in complex mutagenesis populations by next-generation sequencing

  • Author(s): Salehi, F
  • Baronio, R
  • Idrogo-Lam, R
  • Vu, H
  • Hall, LV
  • Kaiser, P
  • Lathrop, RH
  • et al.

Copyright 2015 Salehi et al. Next-generation sequencing (NGS) has revolutionized genetics and enabled the accurate identification of many genetic variants across many genomes. However, detection of biologically important low-frequency variants within genetically heterogeneous populations remains challenging, because they are difficult to distinguish from intrinsic NGS sequencing error rates. Approaches to overcome these limitations are essential to detect rare mutations in large cohorts, virus or microbial populations,mitochondria heteroplasmy, and other heterogeneous mixtures such as tumors. Modifications in library preparation can overcome some of these limitations, but are experimentally challenging and restricted to skilled biologists. This paper describes a novel quality filtering and base pruning pipeline, called Complex Heterogeneous Overlapped Paired-End Reads (CHOPER), designed to detect sequence variants in a complex population with high sequence similarity derived from All-Codon-Scanning (ACS)mutagenesis. A novel fast alignment algorithm, designed for the specified application, has O(n) time complexity. CHOPER was applied to a p53 cancer mutant reactivation study derived from ACS mutagenesis. Relative to error filtering based on Phred quality scores, CHOPER improved accuracy by about 13% while discarding only half as many bases. These results are a step toward extending the power of NGS to the analysis of genetically heterogeneous populations.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View