- Main
Improving the thermoelectric properties of half-Heusler TiNiSn through inclusion of a second full-Heusler phase: microwave preparation and spark plasma sintering of TiNi 1+x Sn
Abstract
Half-Heusler thermoelectrics offer the possibility to choose from a variety of non-toxic and earth-abundant elements. TiNiSn is of particular interest and - with its relatively high electrical conductivity and Seebeck coefficient - allows for optimization of its thermoelectric figure of merit, reaching values of up to 1 in heavily-doped and/or phase-segregated systems. In this contribution, we used an energy- and time-efficient process involving solid-state preparation in a commercial microwave oven and a fast consolidation technique, Spark Plasma Sintering, to prepare a series of Ni-rich TiNi1+xSn with small deviations from the half-Heusler composition. Spark Plasma Sintering plays an important role in the process by being a part of the synthesis of the material rather than solely a densification technique. Synchrotron powder X-ray diffraction and microprobe data confirm the presence of a secondary TiNi2Sn full-Heusler phase within the half-Heusler matrix. We observe a clear correlation between the amount of full-Heusler phase and the lattice thermal conductivity of the samples, resulting in decreasing total thermal conductivity with increasing TiNi2Sn fraction. This trend shows that phonons are scattered effectively as a result of the microstructure of the materials with full-Heusler inclusions in the size range of microns to tens of microns. The best performing samples with around 5% of TiNi2Sn phase exhibit maximum figures of merit of almost 0.6 between 750 K and 800 K which is an increase of ca. 35% compared to the zT of the parent compound TiNiSn.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-