Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Molecular and structural characterization of barley vernalization genes.

  • Author(s): von Zitzewitz, Jarislav
  • Szucs, Péter
  • Dubcovsky, Jorge
  • Yan, Liuling
  • Francia, Enrico
  • Pecchioni, Nicola
  • Casas, Ana
  • Chen, Tony HH
  • Hayes, Patrick M
  • Skinner, Jeffrey S
  • et al.

Vernalization, the requirement of a period of low temperature to induce transition from the vegetative to reproductive state, is an evolutionarily and economically important trait in the Triticeae. The genetic basis of vernalization in cultivated barley (Hordeum vulgare subsp. vulgare) can be defined using the two-locus VRN-H1/VRN-H2 model. We analyzed the allelic characteristics of HvBM5A, the candidate gene for VRN-H1, from ten cultivated barley accessions and one wild progenitor accession (subsp. spontaneum), representing the three barley growth habits - winter, facultative, and spring. We present multiple lines of evidence, including sequence, linkage map location, and expression, that support HvBM5A being VRN-H1. While the predicted polypeptides from different growth habits are identical, spring accessions contain a deletion in the first intron of HvBM5A that may be important for regulation. While spring HvBM5A alleles are typified by the intron-localized deletion, in some cases, the promoter may also determine the allele type. The presence/absence of the tightly linked ZCCT-H gene family members on chromosome 4H perfectly correlates with growth habit and we conclude that one of the three ZCCT-H genes is VRN-H2. The VRN-H2 locus is present in winter genotypes and deleted from the facultative and spring genotypes analyzed in this study, suggesting the facultative growth habit (cold tolerant, vernalization unresponsive) is a result of deletion of the VRN-H2 locus and presence of a winter HvBM5A allele. All reported barley vernalization QTLs can be explained by the two-locus VRN-H1/VRN-H2 model based on the presence/absence of VRN-H2 and a winter vs. spring HvBM5A allele.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View