Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Constraining early to middle Eocene climate evolution of the southwest Pacific and Southern Ocean

Abstract

Studies of early Paleogene climate suffer from the scarcity of well-dated sedimentary records from the southern Pacific Ocean, the largest ocean basin during this time. We present a new magnetostratigraphic record from marine sediments that outcrop along the mid-Waipara River, South Island, New Zealand. Fully oriented samples for paleomagnetic analyses were collected along 45 m of stratigraphic section, which encompasses magnetic polarity Chrons from C23n to C21n (~51.5-47 Ma). These results are integrated with foraminiferal, calcareous nannofossil, and dinoflagellate cyst (dinocyst) biostratigraphy from samples collected in three different expeditions along a total of ~80 m of section. Biostratigraphic data indicates relatively continuous sedimentation from the lower Waipawan to the upper Heretaungan New Zealand stages (i.e., lower Ypresian to lower Lutetian, 55.5 to 46 Ma). We provide the first magnetostratigraphically-calibrated age of 48.88 Ma for the base of the Heretaungan New Zealand stage (latest early Eocene). To improve the correlation of the climate record in this section with other Southern Ocean records, we reviewed the magnetostratigraphy of Ocean Drilling Program (ODP) Site 1172 (East Tasman Plateau) and Integrated Ocean Drilling Program (IODP) Site U1356 (Wilkes Land Margin, Antarctica). A paleomagnetic study of discrete samples could not confirm any reliable magnetic polarity reversals in the early Eocene at Site 1172. We use the robust magneto-biochronology of a succession of dinocyst bioevents that are common to mid-Waipara, Site 1172, and Site U1356 to assist correlation between the three records. A new integrated chronology offers new insights into the nature and completeness of the southern high-latitude climate histories derived from these sites.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View