Skip to main content
eScholarship
Open Access Publications from the University of California

Structure and Reactivity of a High-Spin, Nonheme Iron(III)- Superoxo Complex Supported by Phosphinimide Ligands

Abstract

Nonheme iron oxygenases utilize dioxygen to accomplish challenging chemical oxidations. A further understanding of the Fe-O2 intermediates implicated in these processes is challenged by their highly transient nature. To that end, we have developed a ligand platform featuring phosphinimide donors intended to stabilize oxidized, high-spin iron complexes. O2 exposure of single crystals of a three-coordinate Fe(II) complex of this framework allowed for in crystallo trapping of a terminally bound Fe-O2 complex suitable for XRD characterization. Spectroscopic and computational studies of this species support a high-spin Fe(III) center antiferromagnetically coupled to a superoxide ligand, similar to that proposed for numerous nonheme iron oxygenases. In addition to the apparent stability of this synthetic Fe-O2 complex, its ability to engage in a range of stoichiometric and catalytic oxidation processes demonstrates that this iron-phosphinimide system is primed for development in modeling oxidizing bioinorganic intermediates and green oxidation chemistry.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View