Skip to main content
eScholarship
Open Access Publications from the University of California

A non-orthogonal variational quantum eigensolver

  • Author(s): Huggins, WJ
  • Lee, J
  • Baek, U
  • O'Gorman, B
  • Whaley, KB
  • et al.
Abstract

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. Variational algorithms for strongly correlated chemical and materials systems are one of the most promising applications of near-term quantum computers. We present an extension to the variational quantum eigensolver that approximates the ground state of a system by solving a generalized eigenvalue problem in a subspace spanned by a collection of parametrized quantum states. This allows for the systematic improvement of a logical wavefunction ansatz without a significant increase in circuit complexity. To minimize the circuit complexity of this approach, we propose a strategy for efficiently measuring the Hamiltonian and overlap matrix elements between states parametrized by circuits that commute with the total particle number operator. This strategy doubles the size of the state preparation circuits but not their depth, while adding a small number of additional two-qubit gates relative to standard variational quantum eigensolver. We also propose a classical Monte Carlo scheme to estimate the uncertainty in the ground state energy caused by a finite number of measurements of the matrix elements. We explain how this Monte Carlo procedure can be extended to adaptively schedule the required measurements, reducing the number of circuit executions necessary for a given accuracy. We apply these ideas to two model strongly correlated systems, a square configuration of H4 and the π-system of hexatriene (C6H8).

Main Content
Current View