Skip to main content
eScholarship
Open Access Publications from the University of California

The stretch-length tradeoff in geometric networks: Average case and worst case study

  • Author(s): Aldous, D
  • Lando, T
  • et al.
Abstract

© 2015 Cambridge Philosophical Society. Consider a network linking the points of a rate-1 Poisson point process on the plane. Write Ψave(s) for the minimum possible mean length per unit area of such a network, subject to the constraint that the route-length between every pair of points is at most s times the Euclidean distance. We give upper and lower bounds on the function Ψave(s), and on the analogous worst-case function Ψworst(s) where the point configuration is arbitrary subject to average density one per unit area. Our bounds are numerically crude, but raise the question of whether there is an exponent α such that each function has Ψ(s)(s-1) as s ↓ 1.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View