Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The effects of heating, rhizosphere, and depth on root litter decomposition are mediated by soil moisture


The breakdown and decomposition of plant inputs are critical for nutrient cycling, soil development, and climate-ecosystem feedbacks, but uncertainties persist in how the rates and products of litter decomposition are affected by soil temperature, rhizosphere, and depth of input. We investigated the effects of soil warming (+ 4 °C), rhizosphere, and depth of litter placement on the decomposition of Avena fatua (wild oat grass) root litter in a Mediterranean grassland ecosystem. Field lysimeters were subjected to three environmental treatments (heating, control, and plant removal) and three ¹³C-labeled root litter addition treatments (to A horizon, to B horizon, and no-addition disturbance control) for each of two harvest time points. We buried root litter in February 2014 and measured loss of ¹³C in CO₂ from the soil surface and in leachate as dissolved organic carbon (DOC) over two growing seasons. At the end of each growing season we recovered the ¹³C remaining in the soil. Loss of root litter C occurred almost entirely via heterotrophic respiration, with an estimated < 2% lost as DOC during the initial decay period. The added roots were broken down and incorporated into bulk soil material very quickly; only ~ 30% of added root was visible after 6 months. In the first growing season, decomposition occurred faster in the B than in the A horizon, the latter having greater moisture limitation. Subsequently, there was almost no further decomposition in the B horizon. After two growing seasons, less than 20% of the added root litter C remained in the A or B horizons of all environmental treatments. Heating did not stimulate decomposition, likely because it exacerbated the moisture limitation. However, while plots without plants dried down more slowly than plots with plants, their decomposition rate was not significantly greater, possibly due to the lack of rhizosphere processes such as priming. We conclude that in this Mediterranean grassland ecosystem, soil moisture, which is affected by season, depth, heating, and rhizosphere, plays a dominant role in mediating the effect of those factors on root litter decomposition, which after two seasons did not differ by depth or by treatment.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View