Skip to main content
eScholarship
Open Access Publications from the University of California

Dynamic simulation of an integrated solid oxide fuel cell system including current-based fuel flow control

  • Author(s): Mueller, F
  • Brouwer, J
  • Jabbari, F
  • Samuelsen, S
  • et al.

Published Web Location

https://doi.org/10.1115/1.2174063Creative Commons Attribution 4.0 International Public License
Abstract

A two-dimensional dynamic model was created for a Siemens Westinghouse type tubular solid oxide fuel cell (SOFC). This SOFC model was integrated with simulation modules for other system components (e.g., reformer, combustion chamber, and dissipater) to comprise a system model that can simulate an integrated 25 kw SOFC system located at the University of California, Irvine. A comparison of steady-state model results to data suggests that the integrated model can well predict actual system power performance to within 3%, and temperature to within 5%. In addition, the model predictions well characterize observed voltage and temperature transients that are representative of tubular SOFC system performance. The characteristic voltage transient due to changes in SOFC hydrogen concentration has a time scale that is shown to be on the order of seconds while the characteristic temperature transient is on the order of hours. Voltage transients due to hydrogen concentration change are investigated in detail. Particularly, the results reinforce the importance of maintaining fuel utilization during transient operation. The model is shown to be a useful tool for investigating the impacts of component response characteristics on overall system dynamic performance. Current-based flow control (CBFC), a control strategy of changing the fuel flow rate in proportion to the fuel cell current is tested and shown to be highly effective. The results further demonstrate the impact of fuel flow delay that may result from slow dynamic responses of control valves, and that such flow delays impose major limitations on the system transient response capability. Copyright © 2006 by ASME.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View