Skip to main content
eScholarship
Open Access Publications from the University of California

Modeling plant species distributions under future climates: How fine scale do climate projections need to be?

  • Author(s): Franklin, J
  • Davis, FW
  • Ikegami, M
  • Syphard, AD
  • Flint, LE
  • Flint, AL
  • Hannah, L
  • et al.

Published Web Location

https://doi.org/10.1111/gcb.12051
Abstract

Recent studies suggest that species distribution models (SDMs) based on fine-scale climate data may provide markedly different estimates of climate-change impacts than coarse-scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse-scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000-fold range of spatial scales (0.008-16 km2). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate-data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine- and coarse-scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species' range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making. © 2012 Blackwell Publishing Ltd.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View