Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Arginine-dependent gene regulation via the ArgR repressor is species specific in Chlamydia

Abstract

Some, but not all, Chlamydia spp. are predicted to encode a homolog of ArgR, a master regulatory molecule that modulates arginine biosynthesis and catabolism in bacteria in response to intracellular arginine levels. While genes for arginine biosynthesis are apparently missing in Chlamydia, a putative arginine transport system encoded by glnP, glnQ, and artJ is present. We found that recombinant Chlamydia pneumoniae ArgR functions as an arginine-dependent aporepressor that bound specifically to operator sequences upstream of the glnPQ operon. ArgR was able to repress transcription in a promoter-specific manner that was dependent on the concentration of the corepressor L-arginine. We were able to locate ArgR operators upstream of glnPQ in C. pneumoniae and Chlamydophila caviae but not Chlamydia trachomatis, which corresponded to the predicted presence or absence of ArgR in these chlamydial species. Our findings indicate that only some members of the family Chlamydiaceae have an arginine-responsive mechanism of gene regulation that is predicted to control arginine uptake from the host cell. This is the first study to directly demonstrate a species-specific mechanism of transcriptional regulation in Chlamydia.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View