- Main
Kinetics of IO Production in the CH2I + O2 Reaction Studied by Cavity Ring-Down Spectroscopy
Published Web Location
https://doi.org/10.1021/acs.jpca.5b05058Abstract
Cavity ring-down spectroscopy was used to study the kinetics of formation of IO radicals in the reaction of CH2I + O2 in a flow cell at 52 ± 3 Torr total pressure of N2 diluent and a temperature of 295 K. CH2I was produced by photolysis of CH2I2 at 355 nm and IO probed on the A(2)Π3/2–X(2)Π3/2 (3,0) and (3,1) bands at 435.70 and 448.86 nm, respectively. The rates of formation of IO(v″ = 0) and IO(v″ = 1) were measured as a function of O2 number density using either conventional transient absorption or the simultaneous kinetic and ring-down technique, respectively. IO(v″ = 1) was found to be formed with a significantly larger rate constant, but reached far smaller peak concentrations than IO(v″ = 0). Kinetic modeling supports the conclusion that IO(v″ = 0) is produced both directly and through secondary chemistry, most probably involving the initial formation of the Criegee intermediate CH2OO and subsequent reaction with I atoms, while IO(v″ = 1) is produced exclusively via a direct mechanism. We propose that the reaction mechanism (direct or indirect) depends upon the degree of initial excitation of the photolytically produced CH2I reagent.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-