Skip to main content
eScholarship
Open Access Publications from the University of California

High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids

  • Author(s): McCorquodale, P
  • Dorr, MR
  • Hittinger, JAF
  • Colella, P
  • et al.
Abstract

© 2015 Elsevier Inc. We present an approach to solving hyperbolic conservation laws by finite-volume methods on mapped multiblock grids, extending the approach of Colella, Dorr, Hittinger, and Martin (2011) [10] for grids with a single mapping. We consider mapped multiblock domains for mappings that are conforming at inter-block boundaries. By using a smooth continuation of the mapping into ghost cells surrounding a block, we reduce the inter-block communication problem to finding an accurate, robust interpolation into these ghost cells from neighboring blocks. We demonstrate fourth-order accuracy for the advection equation for multiblock coordinate systems in two and three dimensions.

Main Content
Current View