Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

TaO x electron transport layers for CO 2 reduction Si photocathodes

Abstract

Electron transport layers (ETLs) used as components of photocathodes for light-driven CO2 reduction (CO2R) in aqueous media should have good electronic transport, be stable under CO2R conditions, and, ideally, be catalytically inert for the competing hydrogen evolution reaction (HER). Here, using planar p-Si (100) as the absorbing material, we show that TaOx satisfies all three of the above criteria. TaOx films were synthesized by both pulsed laser deposition (PLD) and radio-frequency (RF) sputtering. In both cases, careful control of the oxygen partial pressure during growth was required to produce ETLs with acceptable electron conductivity. p-Si/TaOx photocathodes were interfaced with ca. 10 nm of a CO2R catalyst: Cu or Au. Under front illumination with simulated AM 1.5G in CO2-saturated bicarbonate buffer, we observed, for both metals, faradaic efficiencies for CO2R products of ∼50% and ∼30% for PLD TaOx and RF sputtered TaOx, respectively, at photocurrent densities up to 8 mA cm−2. p-Si/TiO2/Cu photocathodes were also evaluated but produced mostly H2 (>97%) due to reduction of the TiO2 to Ti metal under CO2R conditions. In contrast, a dual ETL photocathode (p-Si/TiO2/TaOx/Cu) was selective for CO2R, which suggests a strategy for separately optimizing selective charge collection and the stability of the ETL/water interface. The maximum photovoltage obtained with p-Si/TaOx/Cu devices was 300 mV which was increased to 430-460 mV by employing ion implantation to make pn+-Si/TaOx/Cu structures. Photocathodes with RF sputtered TaOx ETLs are stable for CO2R for at least 300 min. Techno-economic analysis shows that the reported system, if scaled, could allow for an economically viable production of feedstocks for chemical synthesis under the adoption of specific CO2 credit schemes, thus becoming a significant component of carbon-neutral manufacturing.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View