Fundamental noise dynamics in cascaded-order Brillouin lasers
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Fundamental noise dynamics in cascaded-order Brillouin lasers

  • Author(s): Behunin, Ryan O
  • Otterstrom, Nils T
  • Rakich, Peter T
  • Gundavarapu, Sarat
  • Blumenthal, Daniel J
  • et al.
Abstract

The dynamics of cascaded-order Brillouin lasers make them ideal for applications such as rotation sensing, highly coherent optical communications, and low-noise microwave signal synthesis. Remark- ably, when implemented at the chip-scale, recent experimental studies have revealed that Brillouin lasers can operate in the fundamental linewidth regime where optomechanical and quantum noise sources dominate. To explore new opportunities for enhanced performance, we formulate a simple model to describe the physics of cascaded Brillouin lasers based on the coupled mode dynamics governed by electrostriction and the fluctuation-dissipation theorem. From this model, we obtain analytical formulas describing the steady state power evolution and accompanying noise properties, including expressions for phase noise, relative intensity noise and power spectra for beat notes of cascaded laser orders. Our analysis reveals that cascading modifies the dynamics of intermediate laser orders, yielding noise properties that differ from single-mode Brillouin lasers. These modifications lead to a Stokes order linewidth dependency on the coupled order dynamics and a broader linewidth than that predicted with previous single order theories. We also derive a simple analytical expression for the higher order beat notes that enables calculation of the Stokes linewidth based on only the relative measured powers between orders instead of absolute parameters, yielding a method to measure cascaded order linewidth as well as a prediction for sub-Hz operation. We validate our results using stochastic numerical simulations of the cascaded laser dynamics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View